SILVOPASTURE
An Agroforestry Practice
– benefits to integrating farm and forest management –

Dusty Walter

Special thanks to:
Rob Kallenbach
Mark Kennedy
Larry Godsey
Outline

- Silvopasture Defined
- Historical Context
- Components of Success
 - Livestock husbandry
 - Pasture management
 - Forest management
- Integrating the Components
- Planning and Monitoring
Combinations of trees, forages, and grazing principles which are integrated and managed to promote broader resource utilization and enhanced farm productivity.

The Silvopastoral System
Grazing unmanaged woodlands is NOT a silvopasture practice!

One or two trees in a pasture ... NOT a silvopasture practice.
Silvopasture

A. Silvo – from the word “Silviculture”
 -- the art and science of tending and producing a forest

B. Pasture – plants grown for grazing
 -- selective production of quality forage for grazing by livestock

Integrates Forestry, Forage, Livestock practices and management
Southern Silvopasture has successfully integrated pine production and grazed forage.
Midwest Silvopasture has demonstrated short-term success associated with rotationally grazed cool-season forages grown in intensively managed upland oak forests.
The dehesa system has persisted for millennia, and exists today, because of its versatility (diversity); because it has been, and it is now, the most efficient system to satisfy the changing demands of the human society within that difficult natural environment.
Components of Success

Tree/Shade Management

Livestock Husbandry

Forage Management
Do cattle need shade?

- It depends!
 - Are cattle grazing endophyte infected fescue?
 - Is the Temperature–Humidity Index (THI) over 72?
 - Have the cattle been selected for short hair coats and heat tolerance?
 - Is plenty of good quality water present?
 - What is the overall condition of the animals?
 - What are the animals accustomed to?
Shade – When it is probably needed

- Shade is probably beneficial any time Temperature–Humidity Index (THI) is above 72.
 - Especially if livestock are grazing endophyte infected fescue

Figure 1. Temperature Humidity Index (THI) for Dairy Cows. Modified from Dr. Frank Wierama (1990), Department of Agricultural Engineering, The University of Arizona, Tucson, Arizona.

<table>
<thead>
<tr>
<th>DEG</th>
<th>F</th>
<th>5</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
<th>35</th>
<th>40</th>
<th>45</th>
<th>50</th>
<th>55</th>
<th>60</th>
<th>65</th>
<th>70</th>
<th>75</th>
<th>80</th>
<th>85</th>
<th>90</th>
<th>95</th>
<th>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>75</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>73</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>80</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>73</td>
<td>74</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>85</td>
<td>72</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>80</td>
<td>80</td>
<td>81</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
</tr>
<tr>
<td>90</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
</tr>
<tr>
<td>95</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>100</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>105</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>110</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>115</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
</tr>
<tr>
<td>120</td>
<td>72</td>
<td>72</td>
<td>73</td>
<td>74</td>
<td>75</td>
<td>76</td>
<td>77</td>
<td>78</td>
<td>79</td>
<td>79</td>
<td>80</td>
<td>81</td>
<td>82</td>
<td>83</td>
<td>84</td>
<td>85</td>
<td>86</td>
<td>86</td>
<td>87</td>
<td>88</td>
<td>89</td>
</tr>
</tbody>
</table>

\(^1\)THI = (Dry-Bulb Temp. °C) + (0.36 dew point Temp., °C) + 41.2

If more than two cows out of 10 have respiratory rates exceeding 100 breaths per minute, then immediate action should be taken to reduce heat stress.
There’s an App for that!
When shade is isolated in only a few areas of a paddock there is nutrient transfer from the grazing area to the shade, eventually killing the trees and lowering productivity of the paddock.
Shade Benefits –– Cattle and Goats

- Improved animal condition
- Improved milk production
- Improved breeding efficiency
- Improved feed intake
- Improved weight gain
- & Improved nutrient distribution?

But – it does depend:

- Animal selection
- Temp.–Humidity Index above 72
- Endophyte infected fescue
- Rotational Grazing
Components of Success

- Forest/Shade Management
- Livestock Husbandry
- Forage Management
Designing Silvopastoral Systems
--Forage Management --

- Browse
- Grass
- Forbs

- Goats
- Llamas
- Sheep
- Elk
- Bison
- Horses
- Cattle

- Cattle
- Horses
- Elk
- Sheep
- Llamas
- Goats

- Grass
- Forbs
- Browse
Optimize Forage Quantity & Quality

Management Intensive Grazing - - *Forage Rest Periods*

![Graph showing available forage and IVDMD over days of rest with labels for Protein/energy, Fiber/lignin, Availability, and Optimum grazing.](image-url)
Rotational Grazing is Essential!!!

- The amount of residual left in a pasture after each grazing affects:
 - Root system
 - Health and vigor of plants
 - Photosynthesis/rate of plant regrowth

<table>
<thead>
<tr>
<th>% Leaf Removed</th>
<th>% Root Growth Stopped</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>50</td>
<td>2 to 4</td>
</tr>
<tr>
<td>60</td>
<td>50</td>
</tr>
<tr>
<td>70</td>
<td>78</td>
</tr>
<tr>
<td>80</td>
<td>100</td>
</tr>
<tr>
<td>90</td>
<td>100</td>
</tr>
</tbody>
</table>
Designing Silvopastoral Systems

1. Grazing Periods less than 5 days
2. Rest periods 20 – 45 days or longer depending on grass growth rates
3. Grazing Heights:
 - Cool Season:
 In @ 8 – 10”
 Out @ 3 – 4”
 - Warm Season:
 In @ 12 – 18”
 Out @ 6 – 8”
4. Monitor and Evaluate – soils, forage, trees, animals
5. Make adjustments as needed

![Graph: Residual height affects pasture growth rate](Gerrish, 1999)
The Effect of Light / Shade

Under 50% shade Cool Season Grasses and Forbs

1. Increase or maintain yield;

2. Improve quality –
 • Reduced lignin and improved digestibility
 • Increased, or no change, in ADF, NDF, CP
 • Improved N content
Designing Silvopastoral Systems

Cool–Season Grasses and Legumes

- Reed canarygrass
- Orchardgrass
- Smooth brome
- Kentucky bluegrass
- Tall fescue
- Perennial ryegrass
- Timothy
- Annual ryegrass
- Redtop

Shade Tolerance Percentile

- Crownvetch
- Kura clover
- Strawberry clover
- Crimson clover
- Subclover
- Red clover
- White clover
- Alfalfa
- Birdsfoot trefoil
- Alsike clover

Shade Tolerance Percentile
Forage Growth Differences

Silvopasture:
- Forages start growth earlier in spring, continue later in fall
- Forage yields higher in heat of summer
Clean, well placed water is critical to a silvopasture system.

Figure 1. Impact of distance from water on temporal utilization rate in rectangular 10 acre paddocks.

R-square = .89
Components of Success

Forage Management

Livestock Husbandry

Forest/Shade Management

Forage Management
This portable shade structure covers an area 15’ x 20’ and costs about $1000 ($750 in materials and $250 in labor).
Silvopasture – Shaded Naturally

Establishment and Maintenance

- Trees into Pastures
- Pastures into the Forest
Trees into Pastures

1) Select species appropriate for the site.
 a. Soils Units (local NRCS or Extension)
 b. What is growing on or adjacent to the planting area.
 c. Dig a hole – texture and depth
Species Selection

1. Trees matched to site conditions
2. Produce a light shade
3. Produce desired products
 -- Nuts, Timber, Syrup ...
4. High value
 -- grafted vs. nursery seedlings
 -- Black Walnut vs. White Oak
5. Deep rooted
Trees into Pastures

1) Select Species appropriate for the site.

2) **Weed Control** –
 a. Mechanical
 b. Herbicide
 c. Mulch
 i. Vegetation – living or dead
 ii. Fabric
Silvopasture – Shaded Naturally

Trees into Pastures
1) Select Species appropriate for the site.
2) Weed Control.
3) Protection from Grazing.
Benefits of Establishing Trees in an Existing Pasture

1. You Choose the Species

2. You Choose the Spacing

** Proper configuration and species selection will influence both the available light for forage production with an added benefit of reduced likelihood of tree damage from mowing **
Planting Configurations

Considerations:

1. Shade Management
2. Mowing
3. Fencing
4. Product growth and harvest
Silvopasture – Shaded Naturally

Establishment and Maintenance

- Trees into Pastures
- Pastures into the Forest
Existing Forest Managed for the Silvopasture Practice

Considerations

1. Select the highest quality trees to remain as crop trees
2. Manage for appropriate light levels
3. Select appropriate sites
4. Rotationally graze to minimize adverse effects
MU Wurdack Farm Silvopasture Research

Thinned Treatment Summary

- Overstory Tree count per ha reduced by ~60% to 67 tpa
- Residual basal area reduced from 112 to 45 ft²/ac
- Stocking approximately 40%
- White oak 70% of residual
- Black oak 20% of residual
Use Tree Selection methods similar to Crop Tree Thinning

1. Identify “best” trees
 i. Site appropriate
 ii. Quality related to objectives

2. Thin around “best” trees to open the crown
 i. 50–60% open across the site

3. Identify next “best” tree
Thin for light

Thin for quality
Other Activities
1. Soil testing
2. Soil amendment
 i. Lime
 ii. Fertilizer
 iii. ????
3. Grass seeding
4. Regeneration
5. Future thinnings
Pasture in the Woods

Possible Concerns

Log quality impacts – –
epicormic branch development?

Site impact/degradation – –
growth rates of residual trees

Regeneration – –
what about the next generation
tree
Regeneration

1. Seed

2. Seedlings (existing or planted)

3. Stump Sprouts

The key will be protection & weed control !!!
Outline

- Silvopasture Defined
- Historical Context
- Components of Success
 - Livestock husbandry
 - Pasture management
 - Forest management
- Integrating the Components
- Planning and Monitoring
Case Studies
The Tomazi Farm

- 210 acres divided into 31 paddocks
- 6 – 9 acres each paddock
- 84 head cow/calf operation
- Rotational grazing system
- Reason for adopting silvopasture:
 - Improved weight gain in the heat of the summer,
 - Increased grass acreage without purchasing or renting (put non-productive land into production)
Edge 1 = 0.98 acres
Edge 2 = 0.56 acres
Edge 3 = 1.40 acres
2.94 acres total
Edge 1: Established in 2010, area cleared was approximately 85 ft x 500 ft
Edge 2: Established in 2010, area cleared was approximately 60 ft x 407 ft
Edge 3: Established in 2011, area cleared was approximately 84 ft x 723 ft
Economic Analysis

- From June 15 – Aug 15, 2010
 - ADG: 1.6 – 2.1 lbs/hd/day
 - (Typical ADG: 0 – (-1) lb/hd/day)
 - ≈ 96 – 126 lbs/hd
 - $130 – $170/hd
 - $10,920 – $14,280 increase in profit
- The silvopasture edges are estimated to cost about $1200/acre ($3,500 total).
- B/C ratio: 3.12 – 4.08
The Williams Farm

- 7 acres divided into 2 paddocks
- Eastern black walnut (*Juglans nigra* L.) planted in 1977 and grafted in 1980
- Part of a rotational grazing system
- Reasons for adopting silvopasture:
 - Personal interest in producing black walnut for the nut and timber market
 - Increased pasture rental income
Economic Analysis

• Additional Income Opportunities
 • Cash rented the pasture to neighbor
 • $35 – $40 per acre
 • 40% – 60% increase over standard pasture rental rates of $25 per acre
 • Black Walnut Markets
 • Sold seed nuts from 1996 – 2008 to a local nursery
 • 800 lbs x $1.50/lb = $1200 per year
 • Sold nutmeat from 1987 – 1996 to a local market
 • 50 lbs per year at $3 per pound (net) = $150 per year
 • Sold nuts to local nut huller from 1987 – present
 • 500 lbs x $0.10 per lb = $50 per year
Economic Analysis

- The silvopasture cost about $5,334 total to establish ($762/acre).
- Annual Maintenance Costs were about $65 per acre per year.
- \[\text{NPV}_{(6\%,44)} \] of the Silvopasture: $2631/acre
 - (pasture at $25 per acre \[\text{NPV}_{(6\%,44)} \] is $385/acre)
- Rate of Return: 12%
- B/C ratio: 4.21
Outline

- Silvopasture Defined
- Historical Context
- Components of Success
 - Livestock husbandry
 - Pasture management
 - Forest management
- Integrating the Components
- Planning and Monitoring
Proper forage selection based on grazing plan and light

Proper livestock rotation – grazing plan

Proper tree spacing – light management

Planning leads to success and sustainability!
Understanding and Taking Advantage of Interactions
Designing Silvopastoral Systems

In most cases, plan to create and maintain:

• 50% light for cool-season forages
• 50–70% light for warm-season forages.
• Thin every 5–7 years
Process to a successful Silvopasture Practice

1. Is the landowner practicing rotational grazing?

2. Does each paddock have water?

3. Overseed forages as necessary to develop appropriate shade tolerant pasture.

4. Manage/maintain tree spacing to create desired light levels (i.e. plant spacing or crop tree thinning intensity)

5. Plan to integrate paddocks with trees to the grazing system so that livestock stress is minimized.
Silvopasture Pitfalls

3 Potential Problem Areas

Forage:
 i. Wrong forage for the light and/or site
 ii. Too much shade

Livestock
 i. Lack of a rotational grazing plan – Overgrazing
 ii. Distance to water (paddock size – water system)

Trees
 i. Wrong tree for the site
 ii. No plan for regeneration
Final Comments

Long–term viability of all of our agricultural practices (including forestry) hinges on productivity and the enhanced utilization of resources without their degradation.

Through appropriate combinations of trees, forages, and grazing principles, productivity and resource utilization can be enhanced.

This is Silvopasture.
Questions?

Dusty Walter
WalterD@Missouri.edu
Balance Livestock Numbers with Forage Supply

- **Stocking rate**: The number of animals or animal liveweight assigned to a grazing unit on a seasonal basis.

- **Carrying capacity**: The stocking rate that provides a target level of performance while maintaining the integrity of the resource base.

 - Stocking rate has an effect on intake and availability.
Carrying capacity of pasture is determined by four factors:

\[
\text{Carrying Capacity} = \frac{\text{Forage Production} \times \text{Seasonal Utilization Rate}}{\text{Daily Intake} \times \text{Length of the Grazing Season}}
\]
Forages Established in the Spring 2003

1. Kentucky 31 tall fescue (34 lb/ac)
2. Red clover (2 lb/ac)
3. Marion lespedeza (7 lb/ac)

Soil Fertility Adjusted

1. 5 tons ENM pelletized lime/ac (initial pH 4.3)
2. 450 lbs 0–150–75 NPK / ac
MU Wurdack Farm Silvopasture Research

To better understand how oaks, and their size, canopy and density, influence silvopasture light.

All measurements taken from the center of each treatment, including:
- DBH
- Basal Area
- Hemispherical Photographs & GLA
- Crown measurements

** 6 growing seasons after thinning, canopy has gone from about 50% to close to 70% coverage